
... 

c L ENGINEERING 





1~IA?cli~EJl~Z LIISELIHOOD IDEl!I”ICATION OF 
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Ab s t r a  e t  

The paper deals k i t h  the maxiinum likelihood (ML) estimation 

of the coefficients of  a discrete Linear system described by 

a s e t  of coupled difference equations ei ther  from the input-output 

data or from the output data alone. The input and measurements 

may be noisy. The methods may be noisy. The methods also 

estimate the covariances of the disturbing noise. Moreover, 

the schemes can be modified t o  allow for  r e a l  time operation, 

but t h e  estimates are  no longer ML except i n  the asymptotic 

sense. Corrrputational results are given for  a t h i r d  order system. 



I. IWI%ODUCTION 

This  paper deals with the ident i f icat ion of the parameters 

of a discrete  stationary stochastic l i nea r  system from noisy input- 

Output measurements { v( i), z ( i )  ) 9  i=1,2, . . . ] or from output data 

{zf i ) ,  i=l, 2, . . .') alone. 

considers the f i t t i n g  of l inear  models fo r  the observed data since 

there may not be such a thing as a l inear  stochastic system which 

completely specifies the probabilist ic environment under considera- 

tion. 

t o  the given data must re f lec t  the ab i l i t y  of the model t o  perform 

tasks l i k e  prediction f o r  which the  model i s  usually used. 

It i s  more apt t o  say tha t  the paper 

The cr i te r ion  function chosen f o r  f i t t i n g  the l inear  model 

Any model building problem i s  i n t h t i ? l y  connected with the  

volume of the available data. 

available measurement pairs  fv( i ) ,  z( i)] i s  limited. 

a r i ses  naturally when a cost i s  attached t o  the experiment fo r  

determining each input-output pa i r  fv(  I), z(i) ').  

the  amount of measurements available may be inf in i te .  

available number of measurements i s  limited, one i s  interested 

i n  computing the optimal estimates of the unknown parameters 

including the noise variance l i k e  the maximurn likelihood estimates. 

In such circumstances, 

the estimates i n  an e f f ic ien t  manner and not necessarily 

i n  "real. time" computation. But when the amount of data 

available 

need for developing "on l ine"  computing schemes which can 

I n  some problems the number of 

This l imitat ion 

In  other problems, 

Mhen the  

one i s  interested only i n  computing 

8 

i s  growing i n  time or i s  inf ini te ,  there i s  a 
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update the estimate every time an additional piece of data comes in. 

For example, such problems a r i se  naturally i n  t h e  determination of 

o p t h a l  f i l t e r s  with noises of unknown statistics. 

the estimates are expected t o  approach t h e i r  t rue values as the 

amount of data handled tends t o  inf ini ty .  

In such problems, 

When the  number of available measurements i s  f ini te ,  say N, 

the cr i ter ion f’unction J (A) used for determining t h e  parameters 

specified by matrix A, with t rue  value A 

N * 
i s  given below: 

N 

where 

!?(i;A) = predicted l inear  l ea s t  squares estimate of z ( i )  

based on a l l  previous measurements z (  j), j i, the 

imputs and the parameter A. 

e(i;A) 4 z(i) - z(i;A) = er ror  i n  prediction 
A 

T R(A) = E [e(i;A) e (i;A)] 

= covariance matrix of the prediction error. 

The er ror  e(i;A), also known as the innovation, obeys a 

l inear  difference equation with z(i) as the forcing function and 

whose coefficients are flmctions of A. Thus the  estimation problem 

i s  reduced t o  the solution of a standard parameter minimization 

problem with difference equations as constraints. 

Figure 1 for the ident i f icat ion Configuration. 

We refer  t o  

When the disturbances are Gaussian, exp [-JN(A)l is the  l i k e l i -  

hood f’unction so tha t  the estimate of A obtained by minimizing 

JN(A) w i t h  respect t o  A i s  the maximum likelihood estimate of A. 



A s  a result, as 

almost surely. 

variance of the 
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3c N tends t o  infinity,  the estimate of A tends t o  A 

Moreover, it is  possible t o  get  a measure of the 

estimate with the aid of cramer-Rao lower bound [12]. 

When the number of measurements is growing with time, the  algo- 

rithms mentioned above can be modified t o  make "on-line" computation 

of estimates possible. 

A t  t h i s  stage, the  available resu l t s  on th i s  problem may be 

br i e f ly  mentioned, 

There are three principle methods of ident i f icat ion which are 

(1) the  l inear  l e a s t  square (LLS) methods of Kalman El], Levin [23, 

Stigli tq.  and Mcbri.de [3]; ( 2 )  the instrumental variable (IV) methods 

of Joseph, Lewis, and Tou [4]  and Mong and Pol& [5]; (3) the 

stochastic approximation and related techniques (SA) of Ho and Lee 161, 

Sakrison ["I, Oza and Jury [ 8 ] .  

difference equations, although some of them l i k e  SA methods can 

A l l  of them t r e a t  only scalar  

be extended fo r  multiple input-output systems. 

only the parameters of the difference equation and 

A l l  of them estimate 

the covariance 

of the associated noises. Moreover, both the  LLS and SA techniques 

need a knowledge of the noise covariances whereas I V  methods cannot 

to le ra te  input disturbances. A l l  of them require knowledge of both 

input and o u t p u t  ineasurernents. Except i n  N methods, the 

estimates obtained with limited number of measurements are very 

poor unless the  i n i t i a l  guess i s  close t o  the t rue value. 

11. TIB MODEL OF THE RANDOM PROCESS 

The r-vector output process y ( i )  i s  related t o  the  r-vector 

input process u ( i )  by the following set of coupled difference 

equations. 
,$@ 
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y ( i )  + %y( i-1) f . . . f Any( i-n) 

(2.1-1 
= c u(i-1) -I- cn,,u(i-2) + 6.. + C1u(i-n) n 

where Ai,Ci9 i=l, . . .,n are a s e t  of r x r constant matrices. 

t rue  values of these matrices have t o  be estimated. 

The 

The integers 

n and r are assumed t o  be known. 

Many a time both y ( i )  and u ( i )  cannot be measured exactly 

for a l l  i. 

tha t  

Usually a vector variable z ( i )  can be measured such 

z ( i )  = y ( i )  + q( i )  

where 

E [l$i)l = 0 

E EW W I  = R,, sij , R 71 > O  

E [ll(i) y ( j ) l  = 0 

The s i tuat ion regarding the input u( i )  i s  s l igh t ly  different.  

In  a number of examples such as economic forecasting very l i t t l e  

(2.3) 

is  known about the inputs except that they are completely unpredic- 

table. Moreover, the inputs may have been introduced solely for the 

puppose of analysis and they may not have any physical significance. 

In  such cases, one can assume u ( i )  t o  be a sequence of zero mean ran- 

dom variables. I n  some other examples with well-defined input- 

output relationships, the input u ( i )  may be represented as 

u ( i )  = v ( i )  + q( i )  (2.4) 

where u ( i )  is the  actual (unknown) input, v(i) i s  the (known) 

nominal input t ha t  was planned for the experiment and s(i) i s  

the inevitable error  i n  injecting the input, 
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It i d  c lear  t ha t  not a11 sequences v ( i >  can serve as relevant 

candida%es f a r  the experimentr 

t ha t  should be sa t i s f i ed  by the nominal input sequence v ( i )  f o r  

We sha l l  give l a t e r  the  conditions 

successful experimentationo 

choice of the nominal input sequence v ( i )  among the various candidates 

Presently the question of the  optimal 

is  open and w i l l  not be t rea ted  here, 

Thus, according t o  the type of data available, one can divide 

the l i nea r  model building problems in to  4 groups where S(i), T(i)  

indicates sequences of zero mean uncorrelated variables referred t o  

i n  obtaining good approximations t o  spectral  density functions of 

y ( * )  C161. I n  addition, classes (A) and (B) w i s e  very often i n  

many economic forecasting problems where the idea of measurement 

noise i s  superfluous. Classes (C) and (D) a r i s e  i n  all. problems 

with well-defined input-output relationships. Classes (A) and (C) 

can be considered t o  be special  cases of classes (B) and (D), 

respectively, by se t t ing  v ( i )  3 0 f o r  a l l  i. Thus v ( i )  w i l l  be 

set ident ical ly  t o  zero when no information is  available on it. 
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The ident i f icat ion problem i s  t o  estimate the unknatm matrices 

among %, . b .,An, el, . . ., cn, R and R from the available data 5 7 
{v(i), z(i)], i=1, . .,N where N can be f i n i t e  or inf ini te .  

before, the collection of a l l  the unknown matrices will be denoted 

A s  

by A* 

111. THE INNOVATION EQUATIONS 

As mentioned i n  the introduction,the coefficients tha t  are  

actually estimated are  those of the so-called "innovation" equation 

relat ing the successive value of the  prediction errors e(i,A) with 

the measured output and input. 

great d e t a i l  i n  reference [lo$ and hence we w i l l  b r i e f ly  mention 

the outlines here. 

This equation has been discussed i n  

L e t  z^(i) = predicted l i nea r  least squares estimate of z ( i )  

given a l l  the previous measurements z (  j), j e i, 

previous measured inputs v( j ), j e - i, and the  

coefficients of the model equation (2.1). 

= Arg [Min E \lz(i) - f i (z( i - l ) ,  z(i-2), . . * ) I \  1 2 

fi 
where fi(*) i s  a l inear  function of i t s  arguments. 

e ( i )  P innovation a t  instant  i 

= z ( i )  - i(i) . 
One can eas i ly  demonstrate [ g ]  tha t  E [ e ( i )  eT(j)]  = 0 ,  

6 j # i . 
measurements. 

Thus, the innovations are  nothing more than orthogonalized 

(A) Exact Measurements of the Output Available 

By definit ion z(i) = y ( i )  . I n  addition, Ci,' i s  assumed t o  

exist. The system equation (2 .1)  can be rewritten as (3.1) 
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n n 

j=1 j=l  

;(t)  can be obtained from (3.1) by set t ing F(t-1) = 0 since one 

does not have any information on it based on the measurements 

z(j) ,  j < t alone. 

n n n 

j=l  j=1 j=2 

Subtracting (3.2) from (3.1), one gets 

The required innovation equation i s  obtained by substi tuting 

(3.3)b in to  equation (3.1). 

n n 

j=2 j=l 

Moreover, from (3.3)a, one can show tha t  

(B) Noisy Measurements of State 

z(i) = y ( i )  + T(i) 
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The derivation of the  innovation equation i s  different  from the  

case considered e a r l i e r  and has been considered by the author i n  

reference [lo]. Hence only the results w i l l  be mentioned here. 

The innovation equation i s  given i n  (3.7). 

n n 
Y- 

e ( t )  + C B  L n-j+l e ( t - j )  . + L ‘ c n-jt.1 v ( t - j  1 
j=1 j=1 

(3.7) n 
= z ( t )  + x A j z ( t - j )  

j-= 1 

L e t  E [e( t )  eT(t)]  =h R~ 

The r x r coefficient matrices B 

solving the following set of algebraic equations. 

... )Bn and Re are found by 17 

i+ 1 i 

k=l  k=l  k= 0 

i=O, 2, . ., n 

where 

The equations (3.8) can be rewritten i n  matrix notation. 



-9- 

c . 
- B1 BZ J 

4- 

AO 

. 

T 
B*l 

n+l 

n C 

n-1 c 

*n *n-1 . . Ao] 

A: 

T 
An-l . 
. 
T 

- *o 

S-1 

* . . c.Ml 

(3.9) 

S I 

An i t e r a t ive  scheme w i l l  be mentioned below Tor obtaining Bi 

and Re from Ai,Ci7 R and R 8 with k denoting the i te ra t ion  number. 7 I Y  

i-1 i 

j=l j=1 

n n n 

j=l j=1 j=l 
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The i t e r a t ion  scheme i n  equations (3.10) and (3.11) i s  based 

on a set of difference equations i n  Bi(t) from which the algebraic 

equations (3.9) were derived [ 101. 

IT. THE LIKELIHOOD FUNCTION 

The conditional probabili ty density p(z( i ) ,  * .  ., z(N)/v(i), . . ., v(N-1); 

A w i l l  be computed assuming the noise sequences y(i) and c ( i )  to be 

Gaussian with the second order properties mentioned ear l ier .  On 

account of the l a t t e r  assmption, the l inear  l e a s t  squares estimates 

z (i ;A) equals the conditional mean of z (i ) mentioned below. 
A 

Let e(i;A) = z ( i )  - i ( i ; A )  

It has already been mentioned that  

H nce 

Let N 



Thus the estimate of A obtained by minimizing JN(A) with 

respect t o  A with the  variable e(j;A) obeying the difference 

dquation (3.4) or (3.7) i s  the same as  the so called "unconditional" 

maximum likelihood (ML) estimate of A *  

By Waldk theorems <l3-lq'! - the  ML estimate of A w i l l  
$4- 

tend t o  the t rue  value A with probabili ty one a s  the 

number of measurements N tend t o  i n f i n i t y  i f  the conditional 

density function of the measurements s a t i s f i e s  the assumptions 

(1) - (8) of Wald's paper [14].. I f  these, the only assumption 

of i n t e re s t  i n  the present context i s  assumption 4 which 

s t a t e s  t ha t  

fo r  a t  l ea s t  one value of z (l), . . ,z (N) . The r e s t  of the 

assumptions are  automatically sa t i s f i ed  here. It i s  natural  

t o  discuss the conditions tha t  need be imposed on the system 

t o  assure the va l id i ty  of the above assumption. These 

conditions can be obtained by inspection of the  innovation 

equation (3.4) or (3.7). 

(posit ive def in i te )  and/condition R 

i f v ( i )  K o for  a l l  i. 

sll 'O Throughout t h i s  discussion 
GI *: 

7 0 is  imposed only 
4 

I n  systems of c lass  (A), v ( i )  E 0 and z ( i )  = y ( i ) .  

The innovation equation (3 .4)  reveals t ha t  one has t o  know 

Cn and t h i s  should be nonsingular. 

the remaining coefficients A 19 An, C19. e ., Cn-l and RF t o  be 

estimated. 

These conditions permit 

I n  systems of c lass  (B) C1,C2, e e m >C," A1, - ,An, R F 
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can be estimated a s  long as the input sequence v ( i ) ,  

i = 1,2,. ... repeatedly span all the directions of the 

r-dimensional space, If v ( i )  i s  a scalar,  t h i s  v ( i )  f 0 

i s  a suff ic ient  condition. Of course Cn must be nonsingular. 

In  problems of c lass  (c),  z ( i j  = y ( i )  + q ( i )  and 

v ( i )  F 0. In  t h i s  case3 the innovation equation (3.7) 

does not expl ic i t ly  involve the coefficients C i j  i = l , . . - ,n .  

Morecjver, there i s  no unique way of specifying RCp. 

can set R = I without any Ics:; of gencrality. Since these 

ident i f icat ion schemes determine 

i 

Hence, one 
i 

4 

only the coefficients of 

the innovation equation ( in  t h i s  case the A B. i = l,...,n 

and Re),  it i s  necessary t o  impose additional conditions so 
i9 1 

t ha t  one can uniquely recover C1,...jCn and R 

coefficients Ai,Bi3 i = l , . e . j n  and Re. 

has t o  consider a scheme for  computing the coefficients Ci 

and R recursively from the algcbra.ic equation (3.9). As 

before, k w i l l  stand for  the i t e r a t ion  number 

from the 
11 

To do t h i s ,  one 

11 

R = Re B1 T 1  A i  
7 

i-1 3 
j =U 

i = l , s . s , n  

with the definit ions 
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eo k I O ,  A. - - I Bntl = 1 

Hence, i n  addition t o  the nonsingularity of Cn, one requires 

to exis t .  This means tha t  a l l  the individual difference 

If equations i n  the system (2.1) must be of the same order. 

A - l  does not ex is t ,  there i s  no unique way of recovering C 

R 
n i 

v from Ai, BiP and Re. 

I n  systems of c lass  (D),  z ( i )  = y ( i )  t q(1) and the 

innovation equation (3.7) involves a l l  the parameters A Ci, i' 

i = l , . . . ,n  expl ic i t ly  and R,, R 

the exact ident i f icat ion i s  possible i f  the  input ~ ( i )  can 

implici t ly  v ia  B i t s .  Thus, 
rl 

excite a l l  the ltrnodes" of the system. In  otherwords, i f  

every set of n consecutive inputs w i t h  v ( i )  as  a leading 

member is rearranged t o  f o r m  a column vector, say v ( i ) >  then 

the sequence v(i), T(2), . must repeatedly span a l l  the 

directions of the nr dimensional space. 

V. AUORITMVIE; FOR MAXIMJM LIKl3LIHOQD ESTIEATION 

This section will deal  only with the systems represented 

i n  equation (2.1). The problem of classes (A), (B), (C) and 

(D) having different  types of input-output information w i l l  

be t reated separately. 

referred t o  have the properties mentioned i n  equations (2.3) 

and (2.5)- 

i = l , . . . ,n> R e  and R . 
i = l,...,N. 

The noises F(i) and q ( i ) ,  .when 

The matrices t o  be estimated are among AijCi, 

The available data i s  fz ( i ) ,v ( i ) ] ,  
rl 

(A) Problems of Class (A) 

Here z ( i )  = y ( i )  and v ( i )  3 0. Since C i s  assutned t o  be n 



nonsingular and known, one may as well  s e t  Cn = I. 

C19...,Cn-l and R unknowns are \,...9A,p 

rotation, re labe l  C. and R as follows: 

The 

For ease of Yo 

1 5 
n 
= ci , i = l , . . . )n- l  An+i 

The innovation equation i s  

n n 

i=2  j =1 

The cr i te r ion  function i s  

N 

A2* j =1 

Minimization of J ( A )  subject t o  the d i f f e ren t i a l  

constraint  (5-1) i s  a standard problem i n  the minimization 

theory. One can solve it numerically e i the r  by a first order 

gradient method or, preferably, by the conjugate gradient 

method irl$ since wi th  a l i t t l e  increase i n  computation, 

one gets  a considerable increase i n  the rea te  of convergence. 

The computational scheme i s  given below involving four s teps  

with t h e  l e t t e r  k i n  superscript denoting the i t e r a t ion  

number 
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(i) With the given A t  solve for  the difference equation 

(5.1) for  the prediction errors  e ( t ) J  t = 19...,N. 

J ( A  ) with respect t o  A2n one ge ts  the following estimate 

Minimizing 
k 

for  A e 

2n N 

t=l 

(ii) Let us compute the gradient matrices 

3y diffWentiat ing the innovation equation with respect t o  

(Ai) , one can compute the partial derivatives ae(t)/3(Ai) . 
j p  j p  

where f3(k) and o(k) a re  scalars.  

The gain o(~) i s  chosen t o  maximize the difference 



-16- 

2n-1 

i=l 

The i n i t i a l  values of  P. are  
1 

( i v )  

BY se t t ing  f3(k) z 0 i n  the above computation one gets 

Increase k t o  k t l  and go t o  s tep (i). 

gradient method. 

(B) Systems of Class (B) 

Here z ( i )  = y ( i )  and sa t i s f i e s  the conditions inentioned 

i n  section I V .  The unknowns are  A 

R 

and hence w i l l  be skipped. 

Ci' i = lj . . .,n and 

The algorith'n i s  very similar t o  t ha t  i n  section (A)  

(c) Systems of Class (c) 

Here z(i) = y ( i )  t q ( i )  and v ( i )  0. A s  mentioned 

e a r l i e r  one can set R = I and assme A t o  be nonsingular. 

The unknoims are A1' ..., An and ClJ...9C e 

equation i s  

5 n 

n The innovation 

n n 

with E(e(t)eT(t)) = Re 
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The ident i f icat ion procedes i n  2 steps.  

jBn (i) Estimate the coeff ic ients  A1’ g iAnI  Bl, .. . 
and R by using t h e  method outlined i n  Part (A) of t h i s  

section. Label them as Al,A2,. .a,Anj B19-+.’B and Re, 

aespectively. 

e 
A 6  A n  n n 

n 

(ii) The estimate 6 of R i s  given by (4.2) 
rt r;6 

i = lie BIT q - 1  
q# A A 

The estimates C1. . . . , C  of C1’. - ’Cn are obtained as  the n 
steady s t a t e  solutions of the recursPve (4.3) with Re’ 

Ai> Bi replaced by se Ai’ B. respectively. 
A A  

1 

(D) Systems of Class (D) 

Here z ( i )  = y ( i )  t q(i) and u ( i )  = v ( i )  t fg(i). The 

input v(i)  obeys the  conditions inentioned mentioned i n  section 

IV. The unknown matrices are A C i = l ’ . . .>n and 

R and R The innovation equation involves a l l  t h e  

parameters Ai> Cip i = 12.. . > n  

i9 i 

5 r) 

and i s  ,given below 

n n 

j =1 j =1 

j =1 

where the coeff ic ients  B 

algebraic equations (3.8). 

i = 1 3 . g . J n  and Re obey the i 
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The c r i te r ion  function is 

The scheme:is very similar t o  t ha t  of par t  (A) of t h i s  section 

and consists of the following steps 
(k) evaluate (i) Using the  given values of A?) and Bi 

- 

e(%) for  a l l  t = 1,. . . ;N from (5.8). 

N 

R: = 1 N i  
j =1 

e ( t )  eT(t)  

( i i )  Evaluate ;ejp for i = 1,. . ,2n+l; j j p  = 1,. . . ,r; 
by different ia t ing the equation (5.8) with respect t o  ( A , )  = j p  
for  a l l  i, j and p. During t h i s  process, one needs the 

p a r t i a l  derivatives of a l l  the elements of B with respect t o  

every element of A .  This can be obtained d i rec t ly  by 

different ia t ing equation (3.8) or recursively by different ia t ing 

equation; ( 3 1 0 1. Th u s o n  e can compute the 

gradient matrices a”/a”, i = 1, . ,2n+1. 

k+l k (k) (k) i = 1,...,2n+l 
’i (iii) Ai = Ai + p 

k aJ (k)  + @(k) k-1 
’i = - a ~ ,  ’i 

1 

- . - .-  
where the scalars p(k) and f3(k) are computed. as i n  par t  &.) of 
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t h i s  sect ion.  

( iv)  Using Ai k+l Re k and Pi k compute Bi (k+l) using 

( 3 ; l O ) .  Compute by modifying (3.11) a s  follows 
n n+l  

j =l 

n 
- 1 C. Akcl CT 

J 2n+l j 
j =1 

(v) Increment k by one and 

j =1 

go t o  s tep (I). 

The computational scheme may be simplified i n  maoy 

respects. When the mean square value of v(i) i s  much greater 

than R then we can neglect the e f fec t  of the p a r t i a l  

derivatives of the elements of Bi w i t h  respect t o  those of 

A .  altogether. 

comparable with t h a t  of R 

derivatives, but they may not vary much from i te ra t ion  t o  

F 

When the mean square value of v ( i )  is 
1 

we may not neglect these p a r t i a l  e’ 

i t e r a t ion  and hence, it is enough i f  they a.re computed once 

i n  many i te ra t ions .  It may be a l so  worthwhile t o  look i n to  

the methods of optimization which do not expl ic i t ly  compute 

the gradients. 

V I .  ON-LINE IDENTIFICATION SCHEMES 

The maximum likelihood estimation ideas w i l l  be used 

i n  conjunction with stochastic approximation t o  develop on- 

l i n e  computing schemes. Instead of handling every measurement 

individually, batch processing w i l l  be performed as it 

reduces the amount of computation i n  many problems. Every 
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batch has a f i n i t e  numberg say m, of measurements. The 

kth batch contains the measurements fz ( i ) ,v ( i ) ] ,  i = (k-l)m+l, 

b..) km. 

Let A denote the matrix of parameters t o  be estimated 

and e(t,A) denote the predicted e r ro r  computed from the 

innovation equation using the actual  measurements z ( t )  and the 

parameter A. Assume tha t  z(t) and e ( t , A )  are Gaussian 

stationary processes. Consider the c r i t e r ion  function J(A) 

A 
= E f(t ,A) 

where R , the covariance matrix of e ( t ,A) , i s  a function of A.  e 
A s  demonstrated by Wald c141, one has 

J(AO) < J(A) Y A" # A (6-1) 

On account of the smoothness properties of J(A) one can write 

where g(A,Ao) i s  a posit ive scalar  function and y (. ) is  

a montonically increasing function of the argument. 

of (6.2), the following inequality i s  val id  for a l l  values 

of'A i n  some neighborhood around the t rue value A . 

In view 

* 

One gets  the  following algorithm by applying the Robbins 

' aJ\  Munro scheme for finding the zero of, the function E I z J ,  
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.L 

where p(k) i s  a scalar  

From Gladyshev's 

tha t  Ai tends t o  

75th probabili ty 

satisfied,  w e  do 

correction terms 

equation (6.4). 

k 

sequence such tha t  

and 
w 

k 

theorem [ll], and equations (6.2)-(6.5) it follows 

the t rue  value Ai both i n  the mean square sense and 

one. It should be noted tha t  i f  condition (6.3) i s  

not need any independence assumptions on the 

used i n  the stochastic approximation scheme of 

A s  i n  a l l  stochastic approximation procedures, the 

-% 

mean square e r ror  of the estimate i s  inversely proportional t o  the 

number of measurements processed. 

The de ta i l s  of the computation w i l l  be given f o r  problems of 

the classes (A) and (D). The others are omitted since the methods 

are similar. 

(A) Systems of Class (A) 

i' 
- A The unknowns are A i=l, . . .,n. Aei - Ci, i=1, . . ., n-1 and 

The algorithm i s  b = Rc. Let Cn = I. A2n 

km 

(k-l)mt- 1 
i=l, . . ., 2n-1 

t 
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The auxiliazy equations f o r  computing e ( t )  and i t s  p a r t i a l  

derivatives are  given below 

n n 

j= 1 j=l  

i=1, . . ., 2n 

p, q=1, . . ., r 
rJx 

2n-j+l e(t-j) 
- L  
j= 1 = P9 

(B) Systems of Class D 

- h A - A ~ i ,  i=l, ..., n, R5 = A2nt.l, i The unknowns are  Ai, *.  .,An, 

and R The algorithm i s  given i n  the  following 3 steps. A 
Re = *Znt.2 n' 

k k- 1 
17 

Update R 

(i) From the given values of Ai, i=1,. . ., 2nt2 and R 
k k 

T 
compute Bi, i=lt .. ., n from the equations (3.10). 

using the  equation given below which i s  a modification of (3.11). 

n 2n 

(ii) The er ror  e ( t )  i s  evaluated recursively 

n n 

j=1 j=1 

n 
T k  = z(t) f A j  z ( t - j )  

j=1 
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One can recursively compute the p a r t i a l  derivatives of e ( t )  w i t h  

respect t o  Ai f o r  a l l  i=l, . . .) 2111-1 by different ia t ing the e ( t )  

equation and using the p a r t i a l  derivatives of a11 elements of Bi 

with respect to A .  for  a11 j. 
J 

be obtained by different ia t ion of equations (3. lo). 

The l a t t e r  p a r t i a l  derivatives can 

( i i i )  Update the  values of A?) as follows: 

km 

(k-l)mtl 
i = l , . . . , Z n + l  

t 

The bulk of the  computation occurs i n  s tep  ( i i ) ,  T h e batch 

processing of data helps i n  the reduction of the p a r t i a l  derivatives 

t o  be evaluated. Rdgarding the p a r t i a l  derivatives of the elements 

of Bi w i t h  respect t o  those of A 

part (D) of the section V are a lso valid here. 

a11 the comments made e a r l i e r  i n  3’ 
When r i s  large, 

the demands on the computer may be heavy since for  fixed n, the amount 

of computation i s  proportional t o  r . 3 But there i s  no way of gett ing 

around the problem if there i s  both process noise and measurement 

noise and one i n s i s t s  on measuring a11 the noise covariances and 

coefficients of t he  difference equation. O f  course, the amount of 

computation is  great ly  reduced if the input noise E were absent 

since Bi = An-i+l. and hence the p a r t i a l  derivatives of Bi w i t h  

respect t o  A can be writ ten down by inspection. 3 
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VII. EXAMPLES 

(A) Maximum Likelihood Estimation of a T h i r d  Order System 

A single input-single output system obeying the following 

difference equation w i l l  be considered. 

y ( i )  + alJr(i-1) + a2y(i-2) + a3y(i-3) # 

= c31(i-l) + c25(i-2) + c35(i-3) 

z ( i )  = y ( i )  + v(i) 

N o  information i s  available on the input q ( i )  except t h a t  

it i s  zero mean. A s  before, one can get r the covariance of 

noise $( i), t o  be one. 

and r , the  covariance of the uncorrelated noise ll(i). 

available measurements are {z(i) ,  i=l,, . ..,a’) 

5’ L 

3 The u n k n m s  are al, a2’ a3, clYc2’C 

The only 

The computational method mentioned i n  section V(C) can be 

used here. However, since the output z(.) is  a scalar, one can 

easily w r i t e  up a second order gradient method without much e f fo r t  

for  carrying out the  minimization process. 

i n  figure 2 and tab le  1. 

The resu l t s  are  given 

I n  f igure 2 the ML estimates of the  

seven parameters are graphed against the  number of samples N. 

f igure shows how the  ML estimates approach t h e i r  t rue  value as 

This 

the number of samples become large. In  table  1 the number of samples 

are fixed a t  some number, say 404 and the estimates obtained during 

the minimization process are tabulated against the nmber’of 

i terations.  

t ion  i s  performed i n  the first i te ra t ion  i tself .  

A s  cm’be seen from the table, most of the minimiza- 

(B) On-Line Determination of the Noise S t a t i s t i c s  

Consider the following scalar input-scalar output system 



Table 1. Results of the I te ra t ive  Procedure for Computing 
the ML Estimates. The number of samples i s  fixed 
a t  the value 400. 

I te ra t ion  
Number 1 a 

0 0.5 

I 
2 C 1 C 

2 a3 a 

0-  5 0 -5  0 0 
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z ( i )  = y ( i )  + n ( i )  

g ( i )  i s  zero mean, uncorrelatzd process, not accessable fo r  

measurement. Without loss of g e x r a l i t y ,  s e t  r = 1. The 

coefficients al, . . .; an, cl, ., c a m  known. Only the  variance n 

e 

of noise n ( i )  i s  unknown. This will be estimated on-line 3 
from the  meast.y.emnn.C,s z(i). Thc~ iniiovaticn equation i s  

n .  n 
e ( t )  -+ ybj  e ( t - j )  = z ( t )  f 1 a j  z ( t - j )  

L 
j= L j=l  

2 

7 
Let E[e ( t i ]  = re. Tlie coefficients bl, ..., bn, r and r e 

and unknown since they dlepend on r 

estimates of re,bi a t  the  tth instant. 

written as follows using t both as the time and i te ra t ion  index. 

Le-;; î  ( t )  and. bi(%) be rt* e 
Then the  algorithm can be 

n n 
7- 

e ( t )  + l b j ( t )  e ( t - j )  = z ( t )  f a z ( t - j )  L j  
j= l  j = S  

The recursive equations f o r  b can be wri t ten down from (3.10) 

bl(t)  = a r (t-l)/re(t-l) 
n r l  

i-1 i 

r (t-1) ai - + l a  n-j+l 
1 \ bi( t )  = --- 

j=l  j=S 

i-1 
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The equation f o r  r ( t )  can be obtained by modifying (3.11). 71 

n n 

j=1 j=1 j=1 

This completes the ident i f icat ion algorithm. 

One can show [lo] tha t  the approximate value of' the bes t  estimate 

of y ( t )  given ~ ( 1 ) ~  .. ., z ( t )  can be writ ten down as follows 

VIII. DISCUSSION 

While comparing the existing methods of ident i f icat ion [ 1-83 

with these of th i s  paper, the following aspects of our algorithms 

should be mentioned. 

( i )  With limited number of measurements, t h e  maximum l i k e l i -  

hood estimates of the various parameters including the noise variances 

are computed. One can rarely do be t t e r  than this .  

measure of the variance of the estimate. 

One can g e t  a 

( i i )  The ident i f icat ion i s  possible even i f  there a re  no 

input measurements. 

( i i i )  

similar manner. 

( iv)  

The method handles vector measurements also. i n  a 

The noise I n  the output n(i) need not be uncorrelated, 

It can have f i n i t e  correlation time (.:?tth unknown covariance 

function). 
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(v) The algorithms present a convenient method of conpuling 

good approximations to the spectral densities of stationary processes 

on the basis of the observed samples by assuming t h a t  they obey a 

model of equation (2.1). Hmevcr, a rigorous comparison has not 

been made with the traditional methods [l6]. 

It has already been mentioned that %he on-line identification 

schemes present a method of optimal filtering with disturbances of 

unknown statistics. The comptzttlonal aspects associated with the 

on-line schemes have already b2en mmtioned. Zurther, no stability 

studies are available on our afgoritkrs. 

are promising, 

But the  experimental results 

Ix. 

The problem of identifying th? coefficients and the noise 

variances of a discrete linea- system on the basis of noisy input- 

output measurements or output measurements has been reduced to 8 

standart? parameter rninirnizetion'pr&len: with difference equations 

as constraints. The cjriterion function is the sum of the squares ~ 

off the optimal prediction error'and this can be interpreted as the 

likelihood function with Gmssian disturbances. @%imal estimates 

of' the parmetedare derived when the nmber of measurements i s  

limited and for various ty-pes of Snput-outgut data. 



System Identif ie r 
a r 3 

FIGURE I : ZOENTlFICATlON CONFtGURATION . 
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True value of r 

- 0 . 5 5 - - I  ' I i  I i I I I 
0 00 200 450 600 800 1000 1200 1400 1600 

Number of Samples N 

FIGURE 2 .  GRAPH OF MAXIMUM LIKELIHOOD ESTIMATES OF 0 1 ~ 0 2 ,  

" 3 9 G i 3 C 2 9 C 3  ,AND r VS NUMBER OF SAMPLES. 
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